Some immersions of projective space in euclidean space
نویسندگان
چکیده
منابع مشابه
Double Point Manifolds of Immersions of Spheres in Euclidean Space
Anyone who has been intrigued by the relationship between homotopy theory and diierential topology will have been inspired by the work of Bill Browder. This note contains an example of the power of these interconnections. We prove that, in the metastable range, the double point manifold a self-transverse immersion S n # R n+k is either a boundary or bordant to the real projective space RP n?k. ...
متن کاملEmbeddings and Immersions of Manifolds in Euclidean Space
The problem of computing the number of embeddings or immersions of a manifold in Euclidean space is treated from a different point of view than is usually taken. Also, a theorem dealing with the existence of an embedding of Mm in ä ¡s given. Introduction. This paper studies the existence and classification of differential immersions and embeddings of a differentiable manifold into Euclidean spa...
متن کاملcompact hypersurfaces in euclidean space and some inequalities
let (m,g ) be a compact immersed hypersurface of (rn+1,) , λ1 the first nonzeroeigenvalue, α the mean curvature, ρ the support function, a the shape operator, vol (m ) the volume of m,and s the scalar curvature of m. in this paper, we established some eigenvalue inequalities and proved theabove.1) 1 2 2 2 2m ma dv dvn∫ ρ ≥ ∫ α ρ ,2)( )2 2 1 2m 1 mdv s dvn nα ρ ≥ ρ∫ − ∫ ,3) if the scalar curvatu...
متن کاملCharacterizations of Slant Ruled Surfaces in the Euclidean 3-space
In this study, we give the relationships between the conical curvatures of ruled surfaces generated by the unit vectors of the ruling, central normal and central tangent of a ruled surface in the Euclidean 3-space E^3. We obtain differential equations characterizing slant ruled surfaces and if the reference ruled surface is a slant ruled surface, we give the conditions for the surfaces generate...
متن کاملEla Some Subspaces of the Projective Space
Let V be a 2m-dimensional vector space over a field F (m ≥ 2) and let k ∈ {1, . . . , 2m − 1}. Let A2m−1,k denote the Grassmannian of the (k − 1)-dimensional subspaces of PG(V ) and let egr denote the Grassmann embedding of A2m−1,k into PG( ∧k V ). Let S be a regular spread of PG(V ) and let XS denote the set of all (k − 1)-dimensional subspaces of PG(V ) which contain at least one line of S. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology
سال: 1963
ISSN: 0040-9383
DOI: 10.1016/0040-9383(63)90023-5